Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 16.087
Filtrar
1.
Shanghai Kou Qiang Yi Xue ; 33(1): 85-89, 2024 Feb.
Artigo em Chinês | MEDLINE | ID: mdl-38583031

RESUMO

PURPOSE: To study the relationship between the expression of prostaglandin E2 (PGE2) and cyclooxygenase-2 (COX-2) and the osteogenic activity and oxygen level of alveolar bone. METHODS: The alveolar bones of 56 patients with chronic periodontitis who received dental treatment from March 2021 to March 2023 were collected as the experimental (periodontitis) group, and the healthy alveolar bones of 53 patients who received dental treatment during the same period were selected as the control group. The osteoblasts were cultured by tissue block culture, and modified Kaplow's alkaline phosphatase (ALP) staining was used to identify the cells. COX-2, PGE2 and osteoclastogenesis inhibitory factor (OPG) receptor activator of nuclear factor-κb ligand (RANKL) and other indicators were determined by ELISA. PGE2, COX-2, OPG, internal oxygen level, ALP, RANKL and their correlation were compared between the two groups. Statistical analysis was performed with SPSS 27.0 software package. RESULTS: PGE2, COX-2 and RANKL in periodontitis group were significantly higher than those in the control group, but OPG, internal oxygen level and ALP were significantly lower than those in the control group (P<0.05). PGE2 and COX2 were highly positively correlated with OPG, internal oxygen level and ALP, but were highly positively correlated with RANKL(P<0.05). CONCLUSIONS: The expression of PGE2 and COX-2 is highly negatively correlated with ALP and oxygen levels. Clinical treatment may consider increasing oxygen levels, increasing oxygen partial pressure, and regulating ALP levels by drugs, so as to change the inflammatory condition of periodontitis or other dental diseases.


Assuntos
Dinoprostona , Periodontite , Humanos , Ciclo-Oxigenase 2/metabolismo , Dinoprostona/metabolismo , Dinoprostona/farmacologia , Osteoblastos/metabolismo , Osteogênese , Osteoprotegerina/metabolismo , Ligante RANK/metabolismo
2.
Biochem Biophys Res Commun ; 710: 149860, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38604070

RESUMO

Schizophyllan (SPG), a ß-glucan from Schizophyllum commune, is recognized for its antioxidant, immunoregulatory, and anticancer activities. In this study, its effects on bone cells, particularly osteoclasts and osteoblasts, were examined. We demonstrated that SPG dose-dependently inhibited osteoclastogenesis and reduced gene expression associated with osteoclast differentiation. SPG also decreased bone resorption and F-actin ring formation. This inhibition could have been due to the downregulation of transcription factors c-Fos and nuclear factor of activated T cells 1 (NFATc1) via the MAPKs (JNK and p38), IκBα, and PGC1ß/PPARγ pathways. In coculture, SPG lowered osteoclastogenic activity in calvaria-derived osteoblasts by reducing macrophage colony-stimulating factor (M-CSF) and receptor activator of nuclear factor-κB ligand (RANKL) expression. In addition, SPG slightly enhanced osteoblast differentiation, as evidenced by increased differentiation marker gene expression and alizarin red staining. It also exhibited antiresorptive effects in a lipopolysaccharide-induced calvarial bone loss model. These results indicated a dual role of SPG in bone cell regulation by suppressing osteoclastogenesis and promoting osteoblast differentiation. Thus, SPG could be a therapeutic agent for bone resorption-related diseases such as osteoporosis, rheumatoid arthritis, and periodontitis.


Assuntos
Reabsorção Óssea , Sizofirano , Humanos , Osteoclastos/metabolismo , Sizofirano/metabolismo , Sizofirano/farmacologia , Fatores de Transcrição NFATC/metabolismo , Osteoblastos/metabolismo , Diferenciação Celular , Reabsorção Óssea/tratamento farmacológico , Reabsorção Óssea/metabolismo , Osteogênese , Ligante RANK/metabolismo
3.
Elife ; 132024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38591777

RESUMO

Bone remodeling is a complex process involving the coordinated actions of osteoblasts and osteoclasts to maintain bone homeostasis. While the influence of osteoblasts on osteoclast differentiation is well established, the reciprocal regulation of osteoblasts by osteoclasts has long remained enigmatic. In the past few years, a fascinating new role for osteoclasts has been unveiled in promoting bone formation and facilitating osteoblast migration to the remodeling sites through a number of different mechanisms, including the release of factors from the bone matrix following bone resorption and direct cell-cell interactions. Additionally, considerable evidence has shown that osteoclasts can secrete coupling factors known as clastokines, emphasizing the crucial role of these cells in maintaining bone homeostasis. Due to their osteoprotective function, clastokines hold great promise as potential therapeutic targets for bone diseases. However, despite long-standing work to uncover new clastokines and their effect in vivo, more substantial efforts are still required to decipher the mechanisms and pathways behind their activity in order to translate them into therapies. This comprehensive review provides insights into our evolving understanding of the osteoclast function, highlights the significance of clastokines in bone remodeling, and explores their potential as treatments for bone diseases suggesting future directions for the field.


Assuntos
Reabsorção Óssea , Osteoclastos , Humanos , Osteoclastos/metabolismo , Osteoblastos/metabolismo , Reabsorção Óssea/metabolismo , Remodelação Óssea , Osteogênese/fisiologia , Diferenciação Celular/fisiologia
4.
Mol Biol Rep ; 51(1): 525, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38632128

RESUMO

BACKGROUND: A series of previous investigations have revealed that p-Smad3 plays a facilitative role in the differentiation and maturation of osteoblasts, while also regulating the expression of certain intercellular communication factors. However, the effects of p-Smad3 in osteoblasts before and after maturation on the proliferation, migration, differentiation, apoptosis and other cellular behaviors of osteoclasts have not been reported. METHODS: MC3T3-E1 cells were cultured in osteogenic induction medium for varying durations, After that, the corresponding conditioned medium was collected and the osteoclast lineage cells were treated. To elucidate the regulatory role of p-Smad3 within osteoblasts, we applied the activator TGF-ß1 and inhibitor SIS3 to immature and mature osteoblasts and collected corresponding conditioned media for osteoclast intervention. RESULTS: We observed an elevation of p-Smad3 and Smad3 during the early stage of osteoblast differentiation, followed by a decline in the later stage. we discovered that as osteoblasts mature, their conditioned media inhibit osteoclasts differentiation and the osteoclast-coupled osteogenic effect. However, it promotes apoptosis in osteoclasts and the angiogenesis coupled with osteoclasts. p-Smad3 in immature osteoblasts, through paracrine effects, promotes the migration, differentiation, and osteoclast-coupled osteogenic effects of osteoclast lineage cells. For mature osteoblasts, p-Smad3 facilitates osteoclast apoptosis and the angiogenesis coupled with osteoclasts. CONCLUSIONS: As pre-osteoblasts undergo maturation, p-Smad3 mediated a paracrine effect that transitions osteoclast cellular behaviors from inducing differentiation and stimulating bone formation to promoting apoptosis and coupling angiogenesis.


Assuntos
Osteoclastos , Osteogênese , Osteoclastos/metabolismo , Osteogênese/fisiologia , Meios de Cultivo Condicionados/farmacologia , Diferenciação Celular , Osteoblastos/metabolismo
5.
Front Endocrinol (Lausanne) ; 15: 1360054, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38638133

RESUMO

Introduction: Osteoporosis is a systemic age-related disease characterized by reduced bone mass and microstructure deterioration, leading to increased risk of bone fragility fractures. Osteoporosis is a worldwide major health care problem and there is a need for preventive approaches. Methods and results: Apigenin and Rutaecarpine are plant-derived antioxidants identified through functional screen of a natural product library (143 compounds) as enhancers of osteoblastic differentiation of human bone marrow stromal stem cells (hBMSCs). Global gene expression profiling and Western blot analysis revealed activation of several intra-cellular signaling pathways including focal adhesion kinase (FAK) and TGFß. Pharmacological inhibition of FAK using PF-573228 (5 µM) and TGFß using SB505124 (1µM), diminished Apigenin- and Rutaecarpine-induced osteoblast differentiation. In vitro treatment with Apigenin and Rutaecarpine, of primary hBMSCs obtained from elderly female patients enhanced osteoblast differentiation compared with primary hBMSCs obtained from young female donors. Ex-vivo treatment with Apigenin and Rutaecarpine of organotypic embryonic chick-femur culture significantly increased bone volume and cortical thickness compared to control as estimated by µCT-scanning. Discussion: Our data revealed that Apigenin and Rutaecarpine enhance osteoblastic differentiation, bone formation, and reduce the age-related effects of hBMSCs. Therefore, Apigenin and Rutaecarpine cellular treatment represent a potential strategy for maintaining hBMSCs health during aging and osteoporosis.


Assuntos
Alcaloides Indólicos , Células-Tronco Mesenquimais , Osteoporose , Quinazolinonas , Humanos , Idoso , Apigenina/farmacologia , Apigenina/metabolismo , Osteoblastos/metabolismo , Senescência Celular , Fator de Crescimento Transformador beta/metabolismo , Osteoporose/tratamento farmacológico , Osteoporose/metabolismo
6.
Theranostics ; 14(6): 2544-2559, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38646641

RESUMO

Background: Mechanical forces are indispensable for bone healing, disruption of which is recognized as a contributing cause to nonunion or delayed union. However, the underlying mechanism of mechanical regulation of fracture healing is elusive. Methods: We used the lineage-tracing mouse model, conditional knockout depletion mouse model, hindlimb unloading model and single-cell RNA sequencing to analyze the crucial roles of mechanosensitive protein polycystin-1 (PC1, Pkd1) promotes periosteal stem/progenitor cells (PSPCs) osteochondral differentiation in fracture healing. Results: Our results showed that cathepsin (Ctsk)-positive PSPCs are fracture-responsive and mechanosensitive and can differentiate into osteoblasts and chondrocytes during fracture repair. We found that polycystin-1 declines markedly in PSPCs with mechanical unloading while increasing in response to mechanical stimulus. Mice with conditional depletion of Pkd1 in Ctsk+ PSPCs show impaired osteochondrogenesis, reduced cortical bone formation, delayed fracture healing, and diminished responsiveness to mechanical unloading. Mechanistically, PC1 facilitates nuclear translocation of transcriptional coactivator TAZ via PC1 C-terminal tail cleavage, enhancing osteochondral differentiation potential of PSPCs. Pharmacological intervention of the PC1-TAZ axis and promotion of TAZ nuclear translocation using Zinc01442821 enhances fracture healing and alleviates delayed union or nonunion induced by mechanical unloading. Conclusion: Our study reveals that Ctsk+ PSPCs within the callus can sense mechanical forces through the PC1-TAZ axis, targeting which represents great therapeutic potential for delayed fracture union or nonunion.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Diferenciação Celular , Condrócitos , Consolidação da Fratura , Osteogênese , Células-Tronco , Canais de Cátion TRPP , Animais , Consolidação da Fratura/fisiologia , Camundongos , Canais de Cátion TRPP/metabolismo , Canais de Cátion TRPP/genética , Condrócitos/metabolismo , Células-Tronco/metabolismo , Osteogênese/fisiologia , Camundongos Knockout , Condrogênese/fisiologia , Periósteo/metabolismo , Osteoblastos/metabolismo , Osteoblastos/fisiologia , Modelos Animais de Doenças , Masculino
7.
Sci Rep ; 14(1): 9444, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38658667

RESUMO

One of the biggest challenges in tissue engineering and regenerative medicine is to ensure oxygen supply of cells in the (temporary) absence of vasculature. With the vision to exploit photosynthetic oxygen production by microalgae, co-cultivated in close vicinity to oxygen-consuming mammalian cells, we are searching for culture conditions that are compatible for both sides. Herein, we investigated the impact of long-term illumination on mammalian cells which is essential to enable photosynthesis by microalgae: four different cell types-primary human fibroblasts, dental pulp stem cells, and osteoblasts as well as the murine beta-cell line INS-1-were continuously exposed to warm white light, red or blue light over seven days. We observed that illumination with red light has no adverse effects on viability, metabolic activity and growth of the cells whereas exposure to white light has deleterious effects that can be attributed to its blue light portion. Quantification of intracellular glutathione did not reveal a clear correlation of this effect with an enhanced production of reactive oxygen species. Finally, our data indicate that the cytotoxic effect of short-wavelength light is predominantly a direct effect of cell illumination; photo-induced changes in the cell culture media play only a minor role.


Assuntos
Fibroblastos , Luz , Espécies Reativas de Oxigênio , Humanos , Animais , Fibroblastos/metabolismo , Fibroblastos/efeitos da radiação , Fibroblastos/citologia , Camundongos , Espécies Reativas de Oxigênio/metabolismo , Sobrevivência Celular/efeitos da radiação , Polpa Dentária/citologia , Polpa Dentária/efeitos da radiação , Osteoblastos/metabolismo , Osteoblastos/efeitos da radiação , Osteoblastos/citologia , Células Cultivadas , Linhagem Celular , Células-Tronco/metabolismo , Células-Tronco/efeitos da radiação , Células-Tronco/citologia , Glutationa/metabolismo
8.
Sichuan Da Xue Xue Bao Yi Xue Ban ; 55(2): 256-262, 2024 Mar 20.
Artigo em Chinês | MEDLINE | ID: mdl-38645858

RESUMO

Runt-related transcription factor (RUNX1) is a transcription factor closely involved in hematopoiesis. RUNX1 gene mutation plays an essential pathogenic role in the initiation and development of hematological tumors, especially in acute myeloid leukemia. Recent studies have shown that RUNX1 is also involved in the regulation of bone development and the pathological progression of bone-related diseases. RUNX1 promotes the differentiation of mesenchymal stem cells into chondrocytes and osteoblasts and modulates the maturation and extracellular matrix formation of chondrocytes. The expression of RUNX1 in mesenchymal stem cells, chondrocytes, and osteoblasts is of great significance for maintaining normal bone development and the mass and quality of bones. RUNX1 also inhibits the differentiation and bone resorptive activities of osteoclasts, which may be influenced by sexual dimorphism. In addition, RUNX1 deficiency contributes to the pathogenesis of osteoarthritis, delayed fracture healing, and osteoporosis, which was revealed by the RUNX1 conditional knockout modeling in mice. However, the roles of RUNX1 in regulating the hypertrophic differentiation of chondrocytes, the sexual dimorphism of activities of osteoclasts, as well as bone loss in diabetes mellitus, senescence, infection, chronic inflammation, etc, are still not fully understood. This review provides a systematic summary of the research progress concerning RUNX1 in the field of bone biology, offering new ideas for using RUNX1 as a potential target for bone related diseases, especially osteoarthritis, delayed fracture healing, and osteoporosis.


Assuntos
Desenvolvimento Ósseo , Diferenciação Celular , Condrócitos , Subunidade alfa 2 de Fator de Ligação ao Core , Subunidade alfa 2 de Fator de Ligação ao Core/genética , Subunidade alfa 2 de Fator de Ligação ao Core/metabolismo , Humanos , Animais , Desenvolvimento Ósseo/fisiologia , Desenvolvimento Ósseo/genética , Condrócitos/metabolismo , Osteoblastos/metabolismo , Osteoblastos/citologia , Osteoclastos/metabolismo , Osteoclastos/citologia , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/citologia , Camundongos , Doenças Ósseas/genética , Doenças Ósseas/metabolismo , Osteoporose/genética , Osteoporose/metabolismo , Osteoartrite/metabolismo , Osteoartrite/genética , Osteoartrite/etiologia
9.
Sichuan Da Xue Xue Bao Yi Xue Ban ; 55(2): 263-272, 2024 Mar 20.
Artigo em Chinês | MEDLINE | ID: mdl-38645873

RESUMO

The dynamic balance between bone formation and bone resorption is a critical process of bone remodeling. The imbalance of bone formation and bone resorption is closely associated with the occurrence and development of various bone-related diseases. Under both physiological and pathological conditions, non-coding RNAs (ncRNAs) play a crucial regulatory role in protein expression through either inhibiting mRNAs translation or promoting mRNAs degradation. Circular RNAs (circRNAs) are a type of non-linear ncRNAs that can resist the degradation of RNA exonucleases. There is accumulating evidence suggesting that circRNAs and microRNAs (miRNAs) serve as critical regulators of bone remodeling through their direct or indirect regulation of the expression of osteogenesis-related genes. Additionally, recent studies have revealed the involvement of the circRNAs-miRNAs regulatory network in the process by which mesenchymal stem cells (MSCs) differentiate towards the osteoblasts (OB) lineage and the process by which bone marrow-derived macrophages (BMDM) differentiate towards osteoclasts (OC). The circRNA-miRNA network plays an important regulatory role in the osteoblastic-osteoclastic balance of bone remodeling. Therefore, a thorough understanding of the circRNA-miRNA regulatory mechanisms will contribute to a better understanding of the regulatory mechanisms of the balance between osteoblastic and osteoclastic activities in the process of bone remodeling and the diagnosis and treatment of related diseases. Herein, we reviewed the functions of circRNA and microRNA. We also reviewed their roles in and the mechanisms of the circRNA-miRNA regulatory network in the process of bone remodeling. This review provides references and ideas for further research on the regulation of bone remodeling and the prevention and treatment of bone-related diseases.


Assuntos
Remodelação Óssea , MicroRNAs , Osteoblastos , Osteogênese , RNA Circular , MicroRNAs/genética , MicroRNAs/metabolismo , RNA Circular/genética , RNA Circular/fisiologia , Remodelação Óssea/genética , Remodelação Óssea/fisiologia , Humanos , Osteogênese/genética , Osteogênese/fisiologia , Osteoblastos/metabolismo , Osteoblastos/citologia , Osteoclastos/metabolismo , Osteoclastos/citologia , Diferenciação Celular , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/citologia , Animais , RNA/genética
10.
Front Immunol ; 15: 1383113, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38646530

RESUMO

It is well established that inflammatory processes in the vicinity of bone often induce osteoclast formation and bone resorption. Effects of inflammatory processes on bone formation are less studied. Therefore, we investigated the effect of locally induced inflammation on bone formation. Toll-like receptor (TLR) 2 agonists LPS from Porphyromonas gingivalis and PAM2 were injected once subcutaneously above mouse calvarial bones. After five days, both agonists induced bone formation mainly at endocranial surfaces. The injection resulted in progressively increased calvarial thickness during 21 days. Excessive new bone formation was mainly observed separated from bone resorption cavities. Anti-RANKL did not affect the increase of bone formation. Inflammation caused increased bone formation rate due to increased mineralizing surfaces as assessed by dynamic histomorphometry. In areas close to new bone formation, an abundance of proliferating cells was observed as well as cells robustly stained for Runx2 and alkaline phosphatase. PAM2 increased the mRNA expression of Lrp5, Lrp6 and Wnt7b, and decreased the expression of Sost and Dkk1. In situ hybridization demonstrated decreased Sost mRNA expression in osteocytes present in old bone. An abundance of cells expressed Wnt7b in Runx2-positive osteoblasts and ß-catenin in areas with new bone formation. These data demonstrate that inflammation, not only induces osteoclastogenesis, but also locally activates canonical WNT signaling and stimulates new bone formation independent on bone resorption.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Inflamação , Osteogênese , Receptor 2 Toll-Like , Via de Sinalização Wnt , Animais , Camundongos , Osteogênese/efeitos dos fármacos , Receptor 2 Toll-Like/metabolismo , Receptor 2 Toll-Like/genética , Inflamação/metabolismo , Porphyromonas gingivalis , Lipopolissacarídeos , Osteoblastos/metabolismo , Osteoblastos/imunologia , Osteócitos/metabolismo , Reabsorção Óssea/metabolismo , Osteoclastos/metabolismo , Osteoclastos/imunologia , Masculino , Proteínas Wnt/metabolismo , Crânio , Camundongos Endogâmicos C57BL
11.
Aging (Albany NY) ; 16(7): 6334-6347, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38575308

RESUMO

BACKGROUND: The purpose of this study is to observe LP45 (Lactobacillus plantarum 45) to investigate the mechanism by which LP45 attenuates oxidative stress-induced damage and regulates the osteoblast-osteoclast balance. MATERIALS AND METHODS: The oxidative stress level and osteoblast- and osteoclast-related proteins were detected by immunofluorescence staining, Western blotting, ROS fluorescent probe and ELISA. Osteoblast cell proliferation capacity was determined by the CCK-8 assay. X-ray observation and HE staining were used to detect the effect of LP45 on osteoporosis. RESULTS: The expression level of SHP2 and Src was significantly increased, and the expression levels of NOX4, P22, P47, IL-1ß, NLRP3, IRF3, RANK, ß-catenin and INF-ß were inhibited in LP45 group and LPS + LP45 group as compared to those in LPS group. Compared with that in LPS group, the concentration of SOD was increased and the concentration of MDA was decreased in LPS + LP45 group. The protein expressions of OPG, RANKL, RUNX3, RANK and ß-catenin in LP45 group and LPS + LP45 group increased. The protein expressions of NF-κB, CREB and AP-1 in LP45 group and LPS + LP45 group decreased significantly. The results were also confirmed by immunofluorescence staining and ROS fluorescent probe. X-ray observation and HE staining showed that LP45 could inhibit the progression of osteoporosis. CONCLUSION: LP45 can exert its antioxidant effect by inhibiting the production of oxidative stress to activate the SHP2 signaling pathway, thus promoting osteoblast differentiation and repressing osteoclast formation to maintain bone homeostasis and improve bone metabolism.


Assuntos
Diferenciação Celular , Lactobacillus plantarum , Osteoblastos , Osteoclastos , Estresse Oxidativo , Proteína Tirosina Fosfatase não Receptora Tipo 11 , Proteína Tirosina Fosfatase não Receptora Tipo 11/metabolismo , Osteoblastos/metabolismo , Animais , Osteoclastos/metabolismo , Camundongos , Osteoporose/metabolismo , Transdução de Sinais , Proliferação de Células
12.
Elife ; 132024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38661167

RESUMO

Osteoblast adherence to bone surfaces is important for remodeling bone tissue. This study demonstrates that deficiency of TG-interacting factor 1 (Tgif1) in osteoblasts results in altered cell morphology, reduced adherence to collagen type I-coated surfaces, and impaired migration capacity. Tgif1 is essential for osteoblasts to adapt a regular cell morphology and to efficiently adhere and migrate on collagen type I-rich matrices in vitro. Furthermore, Tgif1 acts as a transcriptional repressor of p21-activated kinase 3 (Pak3), an important regulator of focal adhesion formation and osteoblast spreading. Absence of Tgif1 leads to increased Pak3 expression, which impairs osteoblast spreading. Additionally, Tgif1 is implicated in osteoblast recruitment and activation of bone surfaces in the context of bone regeneration and in response to parathyroid hormone 1-34 (PTH 1-34) treatment in vivo in mice. These findings provide important novel insights in the regulation of the cytoskeletal architecture of osteoblasts.


Assuntos
Citoesqueleto , Proteínas de Homeodomínio , Osteoblastos , Proteínas Repressoras , Transdução de Sinais , Quinases Ativadas por p21 , Osteoblastos/metabolismo , Animais , Quinases Ativadas por p21/metabolismo , Quinases Ativadas por p21/genética , Quinases Ativadas por p21/deficiência , Camundongos , Citoesqueleto/metabolismo , Proteínas Repressoras/metabolismo , Proteínas Repressoras/genética , Proteínas Repressoras/deficiência , Proteínas de Homeodomínio/metabolismo , Proteínas de Homeodomínio/genética , Adesão Celular , Movimento Celular
13.
Aging (Albany NY) ; 16(5): 4832-4840, 2024 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-38461437

RESUMO

Osteoporosis is a usual bone disease in aging populations, principally in postmenopausal women. Anti-resorptive and anabolic drugs have been applied to prevent and cure osteoporosis and are associated to a different of adverse effects. Du-Zhong is usually applied in Traditional Chinese Medicine to strengthen bone, regulate bone metabolism, and treat osteoporosis. Chlorogenic acid is a major polyphenol in Du-Zhong. In the current study, chlorogenic acid was found to enhance osteoblast proliferation and differentiation. Chlorogenic acid also inhibits the RANKL-induced osteoclastogenesis. Notably, ovariectomy significantly decreased bone volume and mechanical properties in the ovariectomized (OVX) rats. Administration of chlorogenic acid antagonized OVX-induced bone loss. Taken together, chlorogenic acid seems to be a hopeful molecule for the development of novel anti-osteoporosis treatment.


Assuntos
Osteoclastos , Osteoporose , Humanos , Ratos , Feminino , Animais , Ácido Clorogênico/farmacologia , Ácido Clorogênico/uso terapêutico , Ácido Clorogênico/metabolismo , Osteogênese , Osteoporose/metabolismo , Osteoblastos/metabolismo , Diferenciação Celular
14.
Cells ; 13(5)2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38474370

RESUMO

Parathyroid hormone (PTH) plays a pivotal role in maintaining calcium homeostasis, largely by modulating bone remodeling processes. Its effects on bone are notably dependent on the duration and frequency of exposure. Specifically, PTH can initiate both bone formation and resorption, with the outcome being influenced by the manner of PTH administration: continuous or intermittent. In continuous administration, PTH tends to promote bone resorption, possibly by regulating certain genes within bone cells. Conversely, intermittent exposure generally favors bone formation, possibly through transient gene activation. PTH's role extends to various aspects of bone cell activity. It directly influences skeletal stem cells, osteoblastic lineage cells, osteocytes, and T cells, playing a critical role in bone generation. Simultaneously, it indirectly affects osteoclast precursor cells and osteoclasts, and has a direct impact on T cells, contributing to its role in bone resorption. Despite these insights, the intricate mechanisms through which PTH acts within the bone marrow niche are not entirely understood. This article reviews the dual roles of PTH-catabolic and anabolic-on bone cells, highlighting the cellular and molecular pathways involved in these processes. The complex interplay of these factors in bone remodeling underscores the need for further investigation to fully comprehend PTH's multifaceted influence on bone health.


Assuntos
Reabsorção Óssea , Hormônio Paratireóideo , Humanos , Osso e Ossos/metabolismo , Medula Óssea/metabolismo , Reabsorção Óssea/metabolismo , Osteoblastos/metabolismo , Hormônio Paratireóideo/metabolismo
15.
BMC Musculoskelet Disord ; 25(1): 213, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38481217

RESUMO

Osteoporosis is caused by the imbalance of osteoblasts and osteoclasts. The regulatory mechanisms of differentially expressed genes (DEGs) in pathogenesis of osteoporosis are of significant and needed to be further investigated. GSE100609 dataset downloaded from Gene Expression Omnibus (GEO) database was used to identified DEGs in osteoporosis patients. KEGG analysis was conducted to demonstrate signaling pathways related to enriched genes. Osteoporosis patients and the human mesenchymal stem cells (hMSCs) were obtained for in vivo and in vitro resaerch. Lentivirus construction and viral infection was used to knockdown genes. mRNA expression and protein expression were detected via qRT-PCR and western blot assay separately. Alkaline phosphatase (ALP) activity detection, alizarin Red S (ARS) staining, and expression of bone morphogenetic protein 2 (BMP2), osteocalcin (OCN) and Osterix were evaluated to determine osteoblast differentiation capacity. UL-16 binding protein 1 (ULBP1) gene was upregulated in osteoporosis and downregulated in differentiated hMSCs. Knockdown of ULBP1 increased ALP activity, mineralization ability evaluated by ARS staining, expression of BMP2, OCN and Osterix in differentiated hMSCs. Furthermore, rescue experiment demonstrated that suppressed ULBP1 boosted osteoblast differentiation by activating TNF-ß signaling pathway. Knockdown of ULBP1 gene could promoted osteoblast differentiation by activating TNF-ß signaling pathway in differentiated hMSCs. ULBP1 may be a the Achilles' heel of osteoporosis, and suppression of ULBP1 could be a promising treatment for osteoporosis.


Assuntos
Células-Tronco Mesenquimais , Osteoporose , Humanos , Proteínas de Transporte/metabolismo , Diferenciação Celular/genética , Células Cultivadas , Linfotoxina-alfa/metabolismo , Células-Tronco Mesenquimais/metabolismo , Osteoblastos/metabolismo , Osteocalcina/metabolismo , Osteogênese/genética , Osteoporose/genética , Proteína Smad2/metabolismo
16.
Int J Mol Sci ; 25(6)2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38542323

RESUMO

As the global population ages, the number of patients with osteoporosis is rapidly rising. The existing first-line clinical drugs are bone resorption inhibitors that have difficulty restoring the bone mass of elderly patients to the safe range. The range and period of use of existing peptides and monoclonal antibodies are limited, and small-molecule bone formation-promoting drugs are urgently required. We established an I-9 synthesis route with high yield, simple operation, and low cost that was suitable for future large-scale production. I-9 administration promoted bone formation and increased bone mass in mice with low bone mass in an aged C57 mouse model. Our findings revealed a hitherto undescribed pathway involving the BMP2-ERK-ATF4 axis that promotes osteoblast differentiation; I-9 has favorable biosafety in mice. This study systematically investigated the efficacy, safety, and mechanism of I-9 for treating osteoporosis and positions this drug for preclinical research in the future. Thus, this study has promoted the development of small-molecule bone-promoting drugs.


Assuntos
Conservadores da Densidade Óssea , Osteoporose , Idoso , Camundongos , Humanos , Animais , Osteogênese , Preparações Farmacêuticas/metabolismo , Osteoporose/tratamento farmacológico , Osteoporose/metabolismo , Conservadores da Densidade Óssea/uso terapêutico , Peptídeos/metabolismo , Diferenciação Celular , Osteoblastos/metabolismo , Fator 4 Ativador da Transcrição/metabolismo , Proteína Morfogenética Óssea 2/metabolismo
17.
Biochim Biophys Acta Mol Cell Res ; 1871(4): 119712, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38521466

RESUMO

Inflammatory environments can trigger endoplasmic reticulum (ER) stress and lead to pyroptosis in various tissues and cells, including liver, brain, and immune cells. As a key factor of ER stress, DNA damage-inducible transcript 3 (DDIT3)/CCAAT/enhancer-binding protein (C/EBP) homologous protein (CHOP) is upregulated in osteoblasts during inflammatory stimulation. DDIT3/CHOP may therefore regulate osteoblast pyroptosis in inflammatory conditions. During this investigation, we found that lipopolysaccharides (LPS)/adenosine 5'-triphosphate (ATP) stimulation in vitro induced osteoblasts to undergo pyroptosis, and the expression of DDIT3/CHOP was increased during this process. The overexpression of DDIT3/CHOP further promoted osteoblast pyroptosis as evidenced by the increased expression of the inflammasome NLR family pyrin domain containing 3 (NLRP3) and ratios of caspase-1 p20/caspase-1 and cleaved gasdermin D (GSDMD)/GSDMD. To explore the specific mechanism of this effect, we found through fluorescence imaging and Western blot analysis that LPS/ATP stimulation promoted PTEN-induced kinase 1 (PINK1)/E3 ubiquitin-protein ligase parkin (Parkin)-mediated mitophagy in osteoblasts, and this alteration was suppressed by the DDIT3/CHOP overexpression, resulting in increased ratio of pyroptosis compared with the control groups. The impact of DDIT3/CHOP on pyroptosis in osteoblasts was reversed by the application of carbonyl cyanide 3-chlorophenylhydrazone (CCCP), a specific mitophagy agonist. Therefore, our data demonstrated that DDIT3/CHOP promotes osteoblast pyroptosis by inhibiting PINK1/Parkin-mediated mitophagy in an inflammatory environment.


Assuntos
Lipopolissacarídeos , Piroptose , Lipopolissacarídeos/farmacologia , Mitofagia , Caspase 1/metabolismo , Caspase 1/farmacologia , Trifosfato de Adenosina/metabolismo , Osteoblastos/metabolismo , Proteínas Quinases , Ubiquitina-Proteína Ligases/farmacologia
18.
J Bone Miner Res ; 39(3): 357-372, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38477738

RESUMO

Sphingosine-1-phosphate (S1P) plays multiple roles in bone metabolism and regeneration. Here, we have identified a novel S1P-regulated osteoanabolic mechanism functionally connecting osteoblasts (OBs) to the highly specialized bone vasculature. We demonstrate that S1P/S1PR3 signaling in OBs stimulates vascular endothelial growth factor a (VEGFa) expression and secretion to promote bone growth in an autocrine and boost osteogenic H-type differentiation of bone marrow endothelial cells in a paracrine manner. VEGFa-neutralizing antibodies and VEGF receptor inhibition by axitinib abrogated OB growth in vitro and bone formation in male C57BL/6J in vivo following S1P stimulation and S1P lyase inhibition, respectively. Pharmacological S1PR3 inhibition and genetic S1PR3 deficiency suppressed VEGFa production, OB growth in vitro, and inhibited H-type angiogenesis and bone growth in male mice in vivo. Together with previous work on the osteoanabolic functions of S1PR2 and S1PR3, our data suggest that S1P-dependent bone regeneration employs several nonredundant positive feedback loops between OBs and the bone vasculature. The identification of this yet unappreciated aspect of osteoanabolic S1P signaling may have implications for regular bone homeostasis as well as diseases where the bone microvasculature is affected such as age-related osteopenia and posttraumatic bone regeneration.


Sphingosine-1-phosphate (S1P) is a signaling lipid that regulates bone growth and regeneration. In the present study, a novel regenerative mechanism was connected to S1P signaling within the bone. Activation of its receptor S1PR3 in bone-forming osteoblasts led to secretion of vascular endothelial growth factor a (VEGFa), the most potent vessel-stimulating factor. This stimulated the development of specialized vessels of the bone marrow, the H-type vessels, that supported overall bone regeneration. These findings foster our understanding of regular bone metabolism and suggest that S1P-based drugs may help treat diseases such as age-related osteopenia and posttraumatic bone regeneration, conditions crucially dependent on functional bone microvasculature.


Assuntos
Lisofosfolipídeos , Receptores de Lisoesfingolipídeo , Esfingosina/análogos & derivados , Fator A de Crescimento do Endotélio Vascular , Masculino , Camundongos , Animais , Receptores de Lisoesfingolipídeo/metabolismo , Receptores de Esfingosina-1-Fosfato , Fator A de Crescimento do Endotélio Vascular/metabolismo , Osteogênese , Células Endoteliais/metabolismo , Camundongos Endogâmicos C57BL , Osteoblastos/metabolismo
19.
J Bone Miner Res ; 39(3): 298-314, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38477790

RESUMO

Osteocytes sense and respond to mechanical force by controlling the activity of other bone cells. However, the mechanisms by which osteocytes sense mechanical input and transmit biological signals remain unclear. Voltage-sensitive calcium channels (VSCCs) regulate calcium (Ca2+) influx in response to external stimuli. Inhibition or deletion of VSCCs impairs osteogenesis and skeletal responses to mechanical loading. VSCC activity is influenced by its auxiliary subunits, which bind the channel's α1 pore-forming subunit to alter intracellular Ca2+ concentrations. The α2δ1 auxiliary subunit associates with the pore-forming subunit via a glycosylphosphatidylinositol anchor and regulates the channel's calcium-gating kinetics. Knockdown of α2δ1 in osteocytes impairs responses to membrane stretch, and global deletion of α2δ1 in mice results in osteopenia and impaired skeletal responses to loading in vivo. Therefore, we hypothesized that the α2δ1 subunit functions as a mechanotransducer, and its deletion in osteocytes would impair skeletal development and load-induced bone formation. Mice (C57BL/6) with LoxP sequences flanking Cacna2d1, the gene encoding α2δ1, were crossed with mice expressing Cre under the control of the Dmp1 promoter (10 kb). Deletion of α2δ1 in osteocytes and late-stage osteoblasts decreased femoral bone quantity (P < .05) by DXA, reduced relative osteoid surface (P < .05), and altered osteoblast and osteocyte regulatory gene expression (P < .01). Cacna2d1f/f, Cre + male mice displayed decreased femoral strength and lower 10-wk cancellous bone in vivo micro-computed tomography measurements at the proximal tibia (P < .01) compared to controls, whereas Cacna2d1f/f, Cre + female mice showed impaired 20-wk cancellous and cortical bone ex vivo micro-computed tomography measurements (P < .05) vs controls. Deletion of α2δ1 in osteocytes and late-stage osteoblasts suppressed load-induced calcium signaling in vivo and decreased anabolic responses to mechanical loading in male mice, demonstrating decreased mechanosensitivity. Collectively, the α2δ1 auxiliary subunit is essential for the regulation of osteoid-formation, femur strength, and load-induced bone formation in male mice.


The ability of bone to sense and respond to forces generated during daily physical activities is essential to skeletal health. Although several bone cell types contribute to the maintenance of bone health, osteocytes are thought to be the primary mechanosensitive cells; however, the mechanisms through which these cells perceive mechanical stimuli remains unclear. Previous work has shown that voltage sensitive calcium channels are necessary for bone to sense mechanical force; yet the means by which those channels translate the physical signal into a biochemical signal is unclear. Data within this manuscript demonstrate that the extracellular α2δ1 subunit of voltage sensitive calcium channels is necessary for load-induced bone formation as well as to enable calcium influx within osteocytes. As this subunit enables physical interactions of the channel pore with the extracellular matrix, our data demonstrate the need for the α2δ1 subunit for mechanically induced bone adaptation, thus serving as a physical conduit through which mechanical signals from the bone matrix are transduced into biochemical signals by enabling calcium influx into osteocytes.


Assuntos
Osteócitos , Osteogênese , Camundongos , Masculino , Feminino , Animais , Osteócitos/metabolismo , Osteogênese/genética , Cálcio/metabolismo , Microtomografia por Raio-X , Camundongos Endogâmicos C57BL , Osteoblastos/metabolismo , Fêmur/diagnóstico por imagem , Fêmur/metabolismo , Canais de Cálcio/genética , Canais de Cálcio/metabolismo
20.
Environ Pollut ; 347: 123731, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38458519

RESUMO

Bisphenol A (BPA), an ingredient in consumer products, has been suggested that it can interfere with bone development and maintenance, whereas the molecule mechanism remains unclear. The objective of this study is to investigate the effect of BPA on early bone differentiation and metabolism, and its potential molecule mechanism by employing hFOB1.19 cell as an in vitro model, as well as larval zebrafish as an in vivo model. The in vitro experiments indicated that BPA decreased cell viability, inhibited osteogenic activity (such as ALP, RUNX2), increased ROS production, upregulated transcriptional or protein levels of apoptosis-related molecules (such as Caspase 3, Caspase 9), while suppressed transcriptional or protein levels of pyroptosis-specific markers (TNF-α, TNF-ß, IL-1ß, ASC, Caspase 1, and GSDMD). Moreover, the evidences from in vivo model demonstrated that exposure to BPA distinctly disrupted pharyngeal cartilage, craniofacial bone development, and retarded bone mineralization. The transcriptional level of bone development-related genes (bmp2, dlx2a, runx2, and sp7), apoptosis-related genes (bcl2), and pyroptosis-related genes (cas1, nlrp3) were significantly altered after treating with BPA in zebrafish larvae. In summary, our study, combining in vitro and in vivo models, confirmed that BPA has detrimental effects on osteoblast activity and bone development. These effects may be due to the promotion of apoptosis, the initiation of oxidative stress, and the inhibition of pyroptosis.


Assuntos
Compostos Benzidrílicos , Subunidade alfa 1 de Fator de Ligação ao Core , Fenóis , Peixe-Zebra , Animais , Peixe-Zebra/metabolismo , Osteoblastos/metabolismo , Estresse Oxidativo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...